



## Comparison of TNID calculation methods- FASTRAD<sup>®</sup> 3.7

P. Pourrouquet, A. Varotsou and A. Privat (TRAD) D. Standarovski (CNES)



March 08th 2017

TRAD, Tests & Radiations





- What is the impact of the method choice?
- Are they equivalent?
- Follows a similar R&T study for TID Monte Carlo calculation using FASTRAD [RADECS 2016, Pourrouquet et al., Comparative Study Between Monte-Carlo Tools for Space Applications]
- Release of a TNID Monte Carlo module in the latest FASTRAD version
  - Taking into account the detector material





#### Calculation methods & radiation models definition

#### Calculation results

- RT methods
- RMC comparison

#### Conclusions





# Calculation methods & radiation models definition









#### **Ray-Tracing calculation methods**

### Input TNID depth curves



 $\downarrow \downarrow \downarrow$ 

**Calculation methods** 





Normal path







#### **Component models**

Silicon die



#### Realistic packages









## Satellite & equipment shielding models

Equivalent Aluminum boxes







# **Calculation results**



March 08<sup>th</sup> 2017





#### Calculation method impact, RT or RMC, on TNID (FASTRAD 3.7)

#### Reference for all comparisons: Solid sphere / Slant path

 Comparison using different methods for TNID depth curve and RT calculations

| TNID depth curve                       | Slab + normal incidence |             | Slab + isotropic incidence |             |
|----------------------------------------|-------------------------|-------------|----------------------------|-------------|
| RT method                              | Slant path              | Normal path | Slant path                 | Normal path |
| Simple satellite<br>Mean Difference    | 1%                      | 61%         | -34%                       | 4%          |
| Realistic satellite<br>Mean Difference | 8%                      | 62%         | -39%                       | 8%          |

No effect of detector location on results







#### Different geometrical complexities

| Satellite               | Electronic parts        | RMC/RT Difference |                                            |  |
|-------------------------|-------------------------|-------------------|--------------------------------------------|--|
| equivalent<br>satellite | Silicon die w/o package | -4%               | Density different from AI                  |  |
|                         | Metal package (Iron)    | 17%               | <ul> <li>different interactions</li> </ul> |  |
|                         | Plastic package         | <b>6%</b>         | => Secondary creation                      |  |
|                         | Ceramic package         | 7%                | , , , , , , , , , , , , , , , , , , ,      |  |
| complete<br>satellite   | Realistic package?      | 16%               | Slight impact of a 3D complex geometry     |  |





 Equivalence of RT calculation methods for the studied LEO environment

| Case | TNID depth curve             | RT calculation method |  |
|------|------------------------------|-----------------------|--|
| 1    | Sphere + isotropic incidence | Slant path -          |  |
| 2    | Slab + normal incidence      | Slant path -          |  |
| 3    | Slab + isotropic incidence   | Normal path ·         |  |

No effect of the detector location







- Material importance
  - Small impact of the package material on TNID (17%)
- Study performed on a single LEO orbit
  - No general recommendation possible at this point
  - Need to sample all the possible environments (GEO, MEO, GTO, EOR...) in future studies
- Comparison with flight data will allow to complete the study





# Thank you for your attention



